В каких случаях используется синхронизация потоков. Особенности синхронизации в статических методах

Многопоточная реализация приложений на любом языке программирования часто связана с доступом разных потоков к одним и тем же ресурсам. Попытка двух потоков изменить данные одного объекта похожа на стремление двух человек писать на одном листке бумаге одновременно. Если координировать этот процесс - данные могут быть безнадежно испорчены.

Следующий код демонстрирует проблему доступа нескольких потоков к одной переменной:

Class Program { static int x; static void Main(string args) { for (int i = 0; i < 5; i++) { Thread myThread = new Thread(CountMethod); myThread.Name = "Поток №" + i.ToString(); myThread.Start(); } Console.ReadLine(); } public static void CountMethod() { for (x = 1; x < 15; x++) { Console.WriteLine("{0}: {1}", Thread.CurrentThread.Name, x); Thread.Sleep(100); } } }

В примере выше объявляется глобальная переменная x типа int. Она используется в качестве итератора и ее значение при запуске каждого потока выводится на консоль. В реальности, управляющая среда будет переключаться между потоками, результаты таких действий предсказать нельзя.

Все потоки одного домена приложения запускаются параллельно. Основное управление над их работой берет на себя среда управления CLR, которая переключает управление между потоками согласно своему разумению. Программисту остается координировать изменения данных в потоках с помощью механизма синхронизации.

Смысл синхронизации

Синхронизация возможна только над асинхронными методами. Потоки в С# асинхронны. Возможность синхронизации потоков в С# - это компромисс между строгой синхронизацией и асинхронностью, с возможностью оставить код безопасным.

Такой компромисс необходим, чтобы не потерять гибкость асинхронной обработки, и в то же время:

  • Соблюсти порядок создания потоков, если необходимо чтобы один создавался после другого. Например: Будет неприятно если поток обрабатывающие входные данные запустится раньше чем поток, управляющий вводом данных.
  • Создать безопасное обращение к общим ресурсам.

Синхронизация предусматривает блокировку фрагмента кода, в котором используется объект до тех пор, пока с ним работает метод одного потока. При снятии блокировки к коду может получить доступ другой поток, затем следующий, и так далее в зависимости от количества потоков в приложении. Для фрагмента программы, с которым работают несколько потоков, в C# используется оператор lock.

Оператор lock

Появился еще в первой версии спецификаций C# вместе с возникновением асинхронных потоков. Синтаксис его использования прост:

Lock(lockObj) { // синхронизируемые операторы }

Оператор состоит из ключевого слова lock, параметров оператора и блока синхронизируемых инструкций. LockObj - это объект для которого выполняется блокировка. Может быть любого типа, поскольку все типы - дочерние для Object:

Private lockObj = new object(); private lockObj = new Drink(); private lockObj = new Customer();

Допустимо в качестве параметра lock использовать ссылку на текущий обьект. Вот так:

Lock(this) { // синхронизируемые операторы }

Однако этот подход чреват изменением типа, если тип открытый. Рекомендуемый (MSDN) стиль подводит к использованию в качестве объектов блокировки закрытые объекты или статические переменные, если необходимо защитить общие для всех экземпляров данные.

Фигурные скобки используются для обособления блокированного отрезка кода, если такой код состоит из одного оператора, скобки не нужны.

Модифицируем предыдущий пример с использованием оператора lock :

Class Program { private static int x; // Закрытая статическая переменная. private static object lockObj = new object();// Закрытый обьект-заглушка для оператора lock. static void Main(string args) { for (int i = 0; i < 5; i++) { Thread newThread = new Thread(CountMethod); newThread.Name = "Поток №" + i.ToString(); newThread.Start(); } Console.ReadLine(); } public static void CountMethod() { lock (lockObj) // Блокирование объекта потоком. { for (x = 1; x < 9; x++) { Console.WriteLine("{0}: {1}", Thread.CurrentThread.Name, x); Thread.Sleep(100); } } } }

Теперь благодаря последовательной блокировке потоков, переменная будет увеличиваться на единицу, а результат выводится на консоль как положено. Оператор lock блокирует инструкции до тех пор, пока текущий поток не выполнит их все, затем делает их доступными для остальных потоков.

Если копнуть чуть глубже, то оператор lock блокирует объект, вызывая метод Enter в начале своего блока, и - метод Exit в его конце. Это Методы еще одного средства синхронизации и координации работы потока - Монитора.

Синхронизация потоков

При построении многопоточного приложения необходимо гарантировать, что любая часть разделяемых данных защищена от возможности изменения их значений множеством потоков. Учитывая, что все потоки в AppDomain имеют параллельный доступ к разделяемым данным приложения, представьте, что может случиться, если несколько потоков одновременно обратятся к одному и тому же элементу данных. Поскольку планировщик потоков случайным образом будет приостанавливать их работу, что если поток А будет прерван до того, как завершит свою работу? А вот что: поток В после этого прочтет нестабильные данные.

Чтобы проиллюстрировать проблему, связанную с параллелизмом, давайте рассмотрим следующий пример:

Public class MyTheard { public void ThreadNumbers() { // Информация о потоке Console.WriteLine("{0} поток использует метод ThreadNumbers",Thread.CurrentThread.Name); // Выводим числа Console.Write("Числа: "); for (int i = 0; i

Прежде чем посмотреть на тестовые запуски, давайте еще раз проясним проблему. Первичный поток внутри этого домена приложений начинает свое существование, порождая десять вторичных рабочих потоков. Каждый рабочий поток должен вызвать метод ThreadNumbers() на одном и том же экземпляре MyTheard. Учитывая, что никаких мер для блокировки разделяемых ресурсов этого объекта (консоли) не предпринималось, есть хороший шанс, что текущий поток будет отключен, прежде чем метод ThreadNumbers() сможет напечатать полные результаты. Поскольку в точности не известно, когда это может случиться (и может ли вообще), будут получаться непредвиденные результаты. Например, может появиться следующий вывод:

Ясно, что здесь присутствует определенная проблема. Как только каждый поток требует от MyTheard печати числовых данных, планировщик потоков меняет их местами в фоновом режиме. В результате получается несогласованный вывод. Для решения подобных проблем в C# используется синхронизация .

В основу синхронизации положено понятие блокировки, посредством которой организуется управление доступом к кодовому блоку в объекте. Когда объект заблокирован одним потоком, остальные потоки не могут получить доступ к заблокированному кодовому блоку. Когда же блокировка снимается одним потоком, объект становится доступным для использования в другом потоке.

Средство блокировки встроено в язык C#. Благодаря этому все объекты могут быть синхронизированы. Синхронизация организуется с помощью ключевого слова lock . Она была предусмотрена в C# с самого начала, и поэтому пользоваться ею намного проще, чем кажется на первый взгляд. В действительности синхронизация объектов во многих программах на C# происходит практически незаметно.

Ниже приведена общая форма блокировки:

lock(lockObj) { // синхронизируемые операторы }

где lockObj обозначает ссылку на синхронизируемый объект. Если же требуется синхронизировать только один оператор, то фигурные скобки не нужны. Оператор lock гарантирует, что фрагмент кода, защищенный блокировкой для данного объекта, будет использоваться только в потоке, получающем эту блокировку. А все остальные потоки блокируются до тех пор, пока блокировка не будет снята. Блокировка снимается по завершении защищаемого ею фрагмента кода.

Блокируемым считается такой объект, который представляет синхронизируемый ресурс. В некоторых случаях им оказывается экземпляр самого ресурса или же произвольный экземпляр объекта, используемого для синхронизации. Следует, однако, иметь в виду, что блокируемый объект не должен быть общедоступным, так как в противном случае он может быть заблокирован из другого, неконтролируемого в программе фрагмента кода и в дальнейшем вообще не разблокируется.

В прошлом для блокировки объектов очень часто применялась конструкция lock (this). Но она пригодна только в том случае, если this является ссылкой на закрытый объект. В связи с возможными программными и концептуальными ошибками, к которым может привести конструкция lock (this), применять ее больше не рекомендуется. Вместо нее лучше создать закрытый объект, чтобы затем заблокировать его.

Давайте модифицируем предыдущий пример добавив в него синхронизацию:

Public class MyTheard { private object threadLock = new object(); public void ThreadNumbers() { // Используем маркер блокировки lock (threadLock) { // Информация о потоке Console.WriteLine("{0} поток использует метод ThreadNumbers", Thread.CurrentThread.Name); // Выводим числа Console.Write("Числа: "); for (int i = 0; i

Как только поток войдет в контекст lock, маркер блокировки (в данном случае - текущий объект) станет недоступным другим потокам до тех пор, пока блокировка не будет снята по выходе из контекста lock. Таким образом, если поток А захватит маркер блокировки, другие потоки не смогут войти ни в один из контекстов, использующих тот же маркер, до тех пор, пока поток А не освободит его.

Привет! Сегодня продолжим рассматривать особенности многопоточного программирования и поговорим о синхронизации потоков.

Что же такое «синхронизация»? Вне области программирования под этим подразумевается некая настройка, позволяющая двум устройствам или программам работать совместно. Например, смартфон и компьютер можно синхронизировать с Google-аккаунтом, личный кабинет на сайте - с аккаунтами в социальных сетях, чтобы логиниться с их помощью. У синхронизации потоков похожий смысл: это настройка взаимодействия потоков между собой. В предыдущих лекциях наши потоки жили и работали обособленно друг от друга. Один что-то считал, второй спал, третий выводил что-то на консоль, но друг с другом они не взаимодействовали. В реальных программах такие ситуации редки. Несколько потоков могут активно работать, например, с одним и тем же набором данных и что-то в нем менять. Это создает проблемы. Представь, что несколько потоков записывают текст в одно и то же место - например, в текстовый файл или консоль. Этот файл или консоль в данном случае становится общим ресурсом. Потоки не знают о существовании друг друга, поэтому просто записывают все, что успеют за то время, которое планировщик потоков им выделит. В недавней лекции курса у нас был пример, к чему это приведет, давай его вспомним: Причина кроется в том, что потоки работали с общим ресурсом, консолью, не согласовывая действия друг с другом. Если планировщик потоков выделил время Потоку-1, тот моментально пишет все в консоль. Что там уже успели или не успели написать другие потоки - неважно. Результат, как видишь, плачевный. Поэтому в многопоточном программировании ввели специальное понятие мьютекс (от англ. «mutex», «mutual exclusion» - «взаимное исключение») . Задача мьютекса - обеспечить такой механизм, чтобы доступ к объекту в определенное время был только у одного потока. Если Поток-1 захватил мьютекс объекта А, остальные потоки не получат к нему доступ, чтобы что-то в нем менять. До тех пор, пока мьютекс объекта А не освободится, остальные потоки будут вынуждены ждать. Пример из жизни: представь, что ты и еще 10 незнакомых людей участвуете в тренинге. Вам нужно поочередно высказывать идеи и что-то обсуждать. Но, поскольку друг друга вы видите впервые, чтобы постоянно не перебивать друг друга и не скатываться в гвалт, вы используете правило c «говорящим мячиком»: говорить может только один человек - тот, у кого в руках мячик. Так дискуссия получается адекватной и плодотворной. Так вот, мьютекс, по сути, и есть такой мячик. Если мьютекс объекта находится в руках одного потока, другие потоки не смогут получить доступ к работе с этим объектом. Не нужно ничего делать, чтобы создать мьютекс: он уже встроен в класс Object , а значит, есть у каждого объекта в Java.

Как работает оператор synchronized

Давай познакомимся с новым ключевым словом - synchronized . Им помечается определенный кусок нашего кода. Если блок кода помечен ключевым словом synchronized , это значит, что блок может выполняться только одним потоком одновременно. Синхронизацию можно реализовать по-разному. Например, создать целый синхронизированный метод: public synchronized void doSomething () { //...логика метода } Или же написать блок кода, где синхронизация осуществляется по какому-то объекту: public class Main { private Object obj = new Object () ; public void doSomething () { synchronized (obj) { } } } Смысл прост. Если один поток зашел внутрь блока кода, который помечен словом synchronized , он моментально захватывает мьютекс объекта, и все другие потоки, которые попытаются зайти в этот же блок или метод вынуждены ждать, пока предыдущий поток не завершит свою работу и не освободит монитор. Кстати! В лекциях курса ты уже видел примеры synchronized , но они выглядели иначе: public void swap () { synchronized (this ) { //...логика метода } } Тема для тебя новая, и путаница с синтаксисом, само собой, первое время будет. Поэтому запомни сразу, чтобы не путаться потом в способах написания. Эти два способа записи означают одно и то же: public void swap () { synchronized (this ) { //...логика метода } } public synchronized void swap () { } } В первом случае создаешь синхронизированный блок кода сразу же при входе в метод. Он синхронизируется по объекту this , то есть по текущему объекту. А во втором примере вешаешь слово synchronized на весь метод. Тут уже нет нужды явно указывать какой-то объект, по которому осуществляется синхронизация. Раз словом помечен целый метод, этот метод автоматически будет синхронизированным для всех объектов класса. Не будем углубляться в рассуждения, какой способ лучше. Пока выбирай то, что больше нравится:) Главное - помни: объявить метод синхронизированным можно только тогда, когда вся логика внутри него выполняется одним потоком одновременно. Например, в этом случае сделать метод doSomething() синхронизированным будет ошибкой: public class Main { private Object obj = new Object () ; public void doSomething () { //...какая-то логика, доступная для всех потоков synchronized (obj) { //логика, которая одновременно доступна только для одного потока } } } Как видишь, кусочек метода содержит логику, для которой синхронизация не обязательна. Код в нем могут выполнять несколько потоков одновременно, а все критически важные места выделены в отдельный блок synchronized . И еще один момент. Давай рассмотрим «под микроскопом» наш пример из лекции с обменом именами: public void swap () { synchronized (this ) { //...логика метода } } Обрати внимание: синхронизация проводится по this . То есть по конкретному объекту MyClass . Представь, что у нас есть 2 потока (Thread-1 и Thread-2) и всего один объект MyClass myClass . В этом случае, если Thread-1 вызовет метод myClass.swap() , мьютекс объекта будет занят, и Thread-2 при попытке вызвать myClass.swap() повиснет в ожидании, когда мьютекс освободится. Если же у нас будет 2 потока и 2 объекта MyClass - myClass1 и myClass2 - на разных объектах наши потоки спокойно смогут одновременно выполнять синхронизированные методы. Первый поток выполняет: myClass1. swap () ; Второй выполняет: myClass2. swap () ; В этом случае ключевое слово synchronized внутри метода swap() не повлияет на работу программы, поскольку синхронизация осуществляется по конкретному объекту. А в последнем случае объектов у нас 2. Поэтому потоки не создают друг другу проблем. Ведь у двух объектов есть 2 разных мьютекса, и их захват не зависит друг от друга .

Особенности синхронизации в статических методах

А что делать, если нужно синхронизировать статический метод ? class MyClass { private static String name1 = "Оля" ; private static String name2 = "Лена" ; public static synchronized void swap () { String s = name1; name1 = name2; name2 = s; } } Непонятно, что будет выполнять роль мьютекса в этом случае. Ведь мы уже определились, что у каждого объекта есть мьютекс. Но проблема в том, что для вызова статического метода MyClass.swap() нам не нужны объекты: метод-то статический! И что дальше? :/ На самом деле, проблемы в этом нет. Создатели Java обо всем позаботились:) Если метод, в котором содержится критически важная «многопоточная» логика, статический, синхронизация будет осуществляться по классу. Для большей ясности, приведенный выше код можно переписать так: class MyClass { private static String name1 = "Оля" ; private static String name2 = "Лена" ; public static void swap () { synchronized (MyClass. class ) { String s = name1; name1 = name2; name2 = s; } } } В принципе, ты мог до этого додуматься самостоятельно: раз объектов нет, значит механизм синхронизации должен быть как-то «зашит» в сами классы. Так оно и есть: по классам тоже можно синхронизироваться.

Процессом (process) называется экземпляр программы, загруженной в память. Этот экземпляр может создавать нити (thread), которые представляют собой последовательность инструкций на выполнение. Важно понимать, что выполняются не процессы, а именно нити.

Причем любой процесс имеет хотя бы одну нить. Эта нить называется главной (основной) нитью приложения.

Так как практически всегда нитей гораздо больше, чем физических процессоров для их выполнения, то нити на самом деле выполняются не одновременно, а по очереди (распределение процессорного времени происходит именно между нитями). Но переключение между ними происходит так часто, что кажется, будто они выполняются параллельно.

В зависимости от ситуации нити могут находиться в трех состояниях. Во-первых, нить может выполняться, когда ей выделено процессорное время, т.е. она может находиться в состоянии активности. Во-вторых, она может быть неактивной и ожидать выделения процессора, т.е. быть в состоянии готовности. И есть еще третье, тоже очень важное состояние - состояние блокировки. Когда нить заблокирована, ей вообще не выделяется время. Обычно блокировка ставится на время ожидания какого-либо события. При возникновении этого события нить автоматически переводится из состояния блокировки в состояние готовности. Например, если одна нить выполняет вычисления, а другая должна ждать результатов, чтобы сохранить их на диск. Вторая могла бы использовать цикл типа "while(!isCalcFinished) continue;", но легко убедиться на практике, что во время выполнения этого цикла процессор занят на 100 % (это называется активным ожиданием). Таких вот циклов следует по возможности избегать, в чем оказывает неоценимую помощь механизм блокировки. Вторая нить может заблокировать себя до тех пор, пока первая не установит событие, сигнализирующее о том, что чтение окончено.

Синхронизация нитей в ОС Windows

В Windows реализована вытесняющая многозадачность - это значит, что в любой момент система может прервать выполнение одной нити и передать управление другой. Ранее, в Windows 3.1, использовался способ организации, называемый кооперативной многозадачностью: система ждала, пока нить сама не передаст ей управление и именно поэтому в случае зависания одного приложения приходилось перезагружать компьютер.

Все нити, принадлежащие одному процессу, разделяют некоторые общие ресурсы - такие, как адресное пространство оперативной памяти или открытые файлы. Эти ресурсы принадлежат всему процессу, а значит, и каждой его нити. Следовательно, каждая нить может работать с этими ресурсами без каких-либо ограничений. Но... Если одна нить еще не закончила работать с каким-либо общим ресурсом, а система переключилась на другую нить, использующую этот же ресурс, то результат работы этих нитей может чрезвычайно сильно отличаться от задуманного. Такие конфликты могут возникнуть и между нитями, принадлежащими различным процессам. Всегда, когда две или более нитей используют какой-либо общий ресурс, возникает эта проблема.

Пример. Несинхронизированная работа нитей: если временно приостановить выполнение нити вывода на экран (пауза), фоновая нить заполнения массива будет продолжать работать.

#include #include int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { for (i=0; i<5; i++) a[i] = num; num++; } } int main(void) { hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) printf("%d %d %d %d %d\n", a, a, a, a, a); return 0; }

Именно поэтому необходим механизм, позволяющий потокам согласовывать свою работу с общими ресурсами. Этот механизм получил название механизма синхронизации нитей (thread synchronization).

Этот механизм представляет собой набор объектов операционной системы, которые создаются и управляются программно, являются общими для всех нитей в системе (некоторые - для нитей, принадлежащих одному процессу) и используются для координирования доступа к ресурсам. В качестве ресурсов может выступать все, что может быть общим для двух и более нитей - файл на диске, порт, запись в базе данных, объект GDI, и даже глобальная переменная программы (которая может быть доступна из нитей, принадлежащих одному процессу).

Объектов синхронизации существует несколько, самые важные из них - это взаимоисключение (mutex), критическая секция (critical section), событие (event) и семафор (semaphore). Каждый из этих объектов реализует свой способ синхронизации. Также в качестве объектов синхронизации могут использоваться сами процессы и нити (когда одна нить ждет завершения другой нити или процесса); а также файлы, коммуникационные устройства, консольный ввод и уведомления об изменении.

Любой объект синхронизации может находиться в так называемом сигнальном состоянии. Для каждого типа объектов это состояние имеет различный смысл. Нити могут проверять текущее состояние объекта и/или ждать изменения этого состояния и таким образом согласовывать свои действия. При этом гарантируется, что когда нить работает с объектами синхронизации (создает их, изменяет состояние) система не прервет ее выполнения, пока она не завершит это действие. Таким образом, все конечные операции с объектами синхронизации являются атомарными (неделимыми.

Работа с объектами синхронизации

Чтобы создать тот или иной объект синхронизации, производится вызов специальной функции WinAPI типа Create... (напр. CreateMutex). Этот вызов возвращает дескриптор объекта (HANDLE), который может использоваться всеми нитями, принадлежащими данному процессу. Есть возможность получить доступ к объекту синхронизации из другого процесса - либо унаследовав дескриптор этого объекта, либо, что предпочтительнее, воспользовавшись вызовом функции открытия объекта (Open...). После этого вызова процесс получит дескриптор, который в дальнейшем можно использовать для работы с объектом. Объекту, если только он не предназначен для использования внутри одного процесса, обязательно присваивается имя. Имена всех объектов должны быть различны (даже если они разного типа). Нельзя, например, создать событие и семафор с одним и тем же именем.

По имеющемуся дескриптору объекта можно определить его текущее состояние. Это делается с помощью т.н. ожидающих функций. Чаще всего используется функция WaitForSingleObject. Эта функция принимает два параметра, первый из которых - дескриптор объекта, второй - время ожидания в мсек. Функция возвращает WAIT_OBJECT_0, если объект находится в сигнальном состоянии, WAIT_TIMEOUT - если истекло время ожидания, и WAIT_ABANDONED, если объект-взаимоисключение не был освобожден до того, как владеющая им нить завершилась. Если время ожидания указано равным нулю, функция возвращает результат немедленно, в противном случае она ждет в течение указанного промежутка времени. В случае, если состояние объекта станет сигнальным до истечения этого времени, функция вернет WAIT_OBJECT_0, в противном случае функция вернет WAIT_TIMEOUT. Если в качестве времени указана символическая константа INFINITE, то функция будет ждать неограниченно долго, пока состояние объекта не станет сигнальным.

Очень важен тот факт, что обращение к ожидающей функции блокирует текущую нить, т.е. пока нить находится в состоянии ожидания, ей не выделяется процессорного времени.

Критические секции

Объект-критическая секция помогает программисту выделить участок кода, где нить получает доступ к разделяемому ресурсу, и предотвратить одновременное использование ресурса. Перед использованием ресурса нить входит в критическую секцию (вызывает функцию EnterCriticalSection). Если после этого какая-либо другая нить попытается войти в ту же самую критическую секцию, ее выполнение приостановится, пока первая нить не покинет секцию с помощью вызова LeaveCriticalSection. Используется только для нитей одного процесса. Порядок входа в критическую секцию не определен.

Существует также функция TryEnterCriticalSection, которая проверяет, занята ли критическая секция в данный момент. С ее помощью нить в процессе ожидания доступа к ресурсу может не блокироваться, а выполнять какие-то полезные действия.

Пример. Синхронизация нитей с помощью критических секций.

#include #include CRITICAL_SECTION cs; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { EnterCriticalSection(&cs); for (i=0; i<5; i++) a[i] = num; num++; LeaveCriticalSection(&cs); } } int main(void) { InitializeCriticalSection(&cs); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { EnterCriticalSection(&cs); printf("%d %d %d %d %d\n", a, a, a, a, a); LeaveCriticalSection(&cs); } return 0; }

Взаимоисключения

Объекты-взаимоисключения (мьютексы, mutex - от MUTual EXclusion) позволяют координировать взаимное исключение доступа к разделяемому ресурсу. Сигнальное состояние объекта (т.е. состояние "установлен") соответствует моменту времени, когда объект не принадлежит ни одной нити и его можно "захватить". И наоборот, состояние "сброшен" (не сигнальное) соответствует моменту, когда какая-либо нить уже владеет этим объектом. Доступ к объекту разрешается, когда нить, владеющая объектом, освободит его.

Две (или более) нити могут создать мьютекс с одним и тем же именем, вызвав функцию CreateMutex. Первая нить действительно создает мьютекс, а следующие - получают дескриптор уже существующего объекта. Это дает возможность нескольким нитям получить дескриптор одного и того же мьютекса, освобождая программиста от необходимости заботиться о том, кто в действительности создает мьютекс. Если используется такой подход, желательно установить флаг bInitialOwner в FALSE, иначе возникнут определенные трудности при определении действительного создателя мьютекса.

Несколько нитей могут получить дескриптор одного и того же мьютекса, что делает возможным взаимодействие между процессами. Можно использовать следующие механизмы такого подхода:

  • Дочерний процесс, созданный при помощи функции CreateProcess может наследовать дескриптор мьютекса в случае, если при создании мьютекса функцией CreateMutex был указан параметр lpMutexAttributes.
  • Нить может получить дубликат существующего мьютекса с помощью функции DuplicateHandle.
  • Нить может указать имя существующего мьютекса при вызове функций OpenMutex или CreateMutex.

Для того чтобы объявить взаимоисключение принадлежащим текущей нити, надо вызвать одну из ожидающих функций. Нить, которой принадлежит объект, может его "захватывать" повторно сколько угодно раз (это не приведет к самоблокировке), но столько же раз она должна будет его освобождать с помощью функции ReleaseMutex.

Для синхронизации нитей одного процесса более эффективно использование критических секций.

Пример. Синхронизация нитей с помощью мьютексов.

#include #include HANDLE hMutex; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { WaitForSingleObject(hMutex, INFINITE); for (i=0; i<5; i++) a[i] = num; num++; ReleaseMutex(hMutex); } } int main(void) { hMutex=CreateMutex(NULL, FALSE, NULL); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { WaitForSingleObject(hMutex, INFINITE); printf("%d %d %d %d %d\n", a, a, a, a, a); ReleaseMutex(hMutex); } return 0; }

События

Объекты-события используются для уведомления ожидающих нитей о наступлении какого-либо события. Различают два вида событий - с ручным и автоматическим сбросом. Ручной сброс осуществляется функцией ResetEvent. События с ручным сбросом используются для уведомления сразу нескольких нитей. При использовании события с автосбросом уведомление получит и продолжит свое выполнение только одна ожидающая нить, остальные будут ожидать дальше.

Функция CreateEvent создает объект-событие, SetEvent - устанавливает событие в сигнальное состояние, ResetEvent - сбрасывает событие. Функция PulseEvent устанавливает событие, а после возобновления ожидающих это событие нитей (всех при ручном сбросе и только одной при автоматическом), сбрасывает его. Если ожидающих нитей нет, PulseEvent просто сбрасывает событие.

Пример. Синхронизация нитей с помощью событий.

#include #include HANDLE hEvent1, hEvent2; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { WaitForSingleObject(hEvent2, INFINITE); for (i=0; i<5; i++) a[i] = num; num++; SetEvent(hEvent1); } } int main(void) { hEvent1=CreateEvent(NULL, FALSE, TRUE, NULL); hEvent2=CreateEvent(NULL, FALSE, FALSE, NULL); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { WaitForSingleObject(hEvent1, INFINITE); printf("%d %d %d %d %d\n", a, a, a, a, a); SetEvent(hEvent2); } return 0; }

Семафоры

Объект-семафор - это фактически объект-взаимоисключение со счетчиком. Данный объект позволяет "захватить" себя определенному количеству нитей. После этого "захват" будет невозможен, пока одна из ранее "захвативших" семафор нитей не освободит его. Семафоры применяются для ограничения количества нитей, одновременно работающих с ресурсом. Объекту при инициализации передается максимальное число нитей, после каждого "захвата" счетчик семафора уменьшается. Сигнальному состоянию соответствует значение счетчика больше нуля. Когда счетчик равен нулю, семафор считается не установленным (сброшенным).

Функция CreateSemaphore создает объект-семафор с указанием и максимально возможного начального его значения, OpenSemaphore – возвращает дескриптор существующего семафора, захват семафора производится с помощью ожидающих функций, при этом значение семафора уменьшается на единицу, ReleaseSemaphore - освобождение семафора с увеличением значения семафора на указанное в параметре число.

Пример. Синхронизация нитей с помощью семафоров.

#include #include HANDLE hSem; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { WaitForSingleObject(hSem, INFINITE); for (i=0; i<5; i++) a[i] = num; num++; ReleaseSemaphore(hSem, 1, NULL); } } int main(void) { hSem=CreateSemaphore(NULL, 1, 1, "MySemaphore1"); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { WaitForSingleObject(hSem, INFINITE); printf("%d %d %d %d %d\n", a, a, a, a, a); ReleaseSemaphore(hSem, 1, NULL); } return 0; }

Защищенный доступ к переменным

Существует ряд функций, позволяющих работать с глобальными переменными из всех нитей, не заботясь о синхронизации, т.к. эти функции сами за ней следят – их выполнение атомарно. Это функции InterlockedIncrement, InterlockedDecrement, InterlockedExchange, InterlockedExchangeAdd и InterlockedCompareExchange. Например, функция InterlockedIncrement атомарно увеличивает значение 32-битной переменной на единицу, что удобно использовать для различных счетчиков.

Для получения полной информации о назначении, использовании и синтаксисе всех функций WIN32 API необходимо воспользоваться системой помощи MS SDK, входящей в состав сред программирования Borland Delphi или CBuilder, а также MSDN, поставляемым в составе системы программирования Visual C.

Иногда при работе с несколькими потоками или процессами появляется необходимость синхронизировать выполнение двух или более из них. Причина этого чаще всего заключается в том, что два или более потоков могут требовать доступ к разделяемому ресурсу, которыйреально не может быть предоставлен сразу нескольким потокам. Разделяемым называется ресурс, доступ к которому могут одновременно получать несколько выполняющихся задач.

Механизм, обеспечивающий процесс синхронизации, называется ограничением доступа. Необходимость в нем возникает также в тех случаях, когда один поток ожидает события, генерируемого другим потоком. Естественно, должен существовать какой-то способ, с помощью которого первой поток будет приостановлен до совершения события. После этого поток должен продолжить свое выполнение.

Имеется два общих состояния, в которых может находиться задача. Во-первых, задача может выполняться (или быть готовой к выполнению, как только получит доступ к ресурсам процессора). Во-вторых, задача может бытьблокирована. В этом случае ее выполнение приостановлено до тех пор, пока не освободится нужный ей ресурс или не произойдет определенное событие.

В Windows имеется специальные сервисы, которые позволяют определенным образом ограничить доступ к разделяемым ресурсам, ведь без помощи операционной системы отдельный процесс или поток не может сам определить, имеет ли он единоличный доступ к ресурсу. Операционная система Windows содержит процедуру, которая в течении одной непрерывной операции проверяет и, если это возможно, устанавливает флаг доступа к ресурсу. На языке разработчиков операционной системы такая операция называется операцией проверки и установки . Флаги, используемые для обеспечения синхронизации и управления доступом к ресурсам, называютсясемафорами (semaphore) . Интерфейс Win32 API обеспечивает поддержку семафоров и других объектов синхронизации. Библиотека MFC также включает поддержку данных объектов.

Объекты синхронизации и классы mfc

Интерфейс Win32 поддерживает четыре типа объектов синхронизации - все они так или иначе основаны на понятии семафора.

Первым типом объектов является собственно семафор, или классический (стандартный) семафор . Он позволяет ограниченному числу процессов и потоков обращаться к одному ресурсу. При этом доступ к ресурсу либо полностью ограничен (один и только один поток или процесс может обратиться к ресурсу в определенный период времени), либо одновременный доступ получает лишь малое количество потоков и процессов. Семафоры реализуются с помощью счетчика, значение которого уменьшается, когда задаче выделяется семафор, то увеличивается, когда задача освобождает семафор.

Вторым типом объектов синхронизации является исключающий (mutex) семафор . Он предназначен для полного ограничения доступа к ресурсу, чтобы в любой момент времени к ресурсу мог обратиться только один процесс или поток. Фактически, это особая разновидность семафора.

Третьим типом объектов синхронизации является событие , илиобъект события (event object). Он используется для блокирования доступа к ресурсу до тех пор, пока какой-нибудь другой процесс или поток не заявит о том, что данный ресурс может быть использован. Таким образом, данный объект сигнализирует о выполнении требуемого события.

При помощи объекта синхронизации четвертого типа можно запрещать выполнения определенных участков кода программы несколькими потоками одновременно. Для этого данные участки должны быть объявлены как критический раздел (critical section) . Когда в этот раздел входит один поток, другим потокам запрещается делать тоже самое до тех пор, пока первый поток не выйдет из данного раздела.

Критические разделы, в отличие от других типов объектов синхронизации, применяются только для синхронизации потоков внутри одного процесса. Другие же типы объектов могут быть использованы для синхронизации потоков внутри процесса или для синхронизации процессов.

В MFC механизм синхронизации, обеспечиваемый интерфейсом Win32 , поддерживается с помощью следующих классов, порожденных от класса CSyncObject:

    CCriticalSection - реализует критический раздел.

    CEvent - реализует объект события

    CMutex - реализует исключающий семафор.

    CSemaphore - реализует классический семафор.

Кроме этих классов в MFC определены также два вспомогательных класса синхронизации: CSingleLock иCMultiLock . Они контролируют доступ к объекту синхронизации и содержат методы, используемы для предоставления и освобождения таких объектов. КлассCSingleLock управляет доступом к одному объекту синхронизации, а классCMultiLock - к нескольким объектам. Далее будем рассматривать только классCSingleLock .

Когда какой-либо объект синхронизации создан, доступ к нему можно контролировать с помощью класса CSingleLock . Для этого необходимо сначала создать объект типаCSingleLock с помощью конструктора:

CSingleLock (CSyncObject* pObject, BOOL bInitialLock = FALSE);

Через первый параметр передается указатель на объект синхронизации, например семафор. Значение второго параметра определяет, должен ли конструктор попытаться получить доступ к данному объекту. Если этот параметр не равен нулю, то доступ будет получен, в противном случае попыток получить доступ не будет. Если доступ получен, то поток, создавший объект класса CSingleLock , будет остановлен до освобождения соответствующего объекта синхронизации методомUnlock классаCSingleLock .

Когда объект типа CSingleLock создан, доступ к объекту, на который указывал параметр pObject , может контролироваться с помощью двух функций: Lock иUnlock классаCSingleLock .

Метод Lock предназначен для получения доступа к объекту к объекту синхронизации. Вызвавший его поток приостанавливается до завершения данного метода, то есть до тех пор, пока не будет получен доступ к ресурсу. Значение параметра определяет, как долго функция будет ожидать получения доступа к требуемому объекту. Каждый раз при успешном завершении метода значение счетчика, связанного с объектом синхронизации, уменьшается на единицу.

Метод Unlock освобождает объект синхронизации, давая возможность другим потокам использовать ресурс. В первом варианте метода значение счетчика, связанного с данным объектом, увеличивается на единицу. Во втором варианте первый параметр определяет, на сколько это значение должно быть увеличено. Второй параметр указывает на переменную, в которую будет записано предыдущее значение счетчика.

При работе с классом CSingleLock общая процедура управления доступом к ресурсу такова:

    создать объект типа CSyncObj (например, семафор), который будет использоваться для управления доступом к ресурсу;

    с помощью созданного объекта синхронизации создать объект типа CSingleLock;

    для получения доступа к ресурсу вызвать метод Lock;

    выполнить обращение к ресурсу;

    вызвать метод Unlock , чтобы освободить ресурс.

Далее описывается, как создавать и использовать семафоры и объекты событий. Разобравшись с этими понятиями, можно достаточно просто изучить и использовать два других типа объектов снхронизации: критические секции и мьютексы.